CD40-modulated dual-specificity phosphatases MAPK phosphatase (MKP)-1 and MKP-3 reciprocally regulate Leishmania major infection.

نویسندگان

  • Neetu Srivastava
  • Raki Sudan
  • Bhaskar Saha
چکیده

The macrophage-expressed CD40 regulates immune responses to Leishmania major infection by reciprocal signaling through p38 MAPK and ERK1/2. CD40-induced IL-10 or IL-12 plays crucial roles in the promotion or protection from L. major infection, respectively. Because p38 MAPK and ERK1/2 are dephosphorylated by dual-specificity MAPK phosphatases (MKPs), we tested the role of CD40 in the regulation of MKPs in L. major infection. MKP-1 expression and activity increased whereas MKP-3 expression and activity decreased in virulent L. major-infected macrophages. CD40 differentially regulated the expression and activity of MKP-1 and MKP-3, which, in turn, reciprocally regulated CD40-induced p38 MAPK and ERK1/2 phosphorylation and effector functions in macrophages. Triptolide, an inhibitor of MKP-1 expression, and lentivirally expressed MKP-1 short hairpin RNA enhanced CD40-induced anti-leishmanial functions and significantly protected susceptible BALB/c mice from L. major infection. Similarly, lentivirally overexpressed MKP-3 significantly reduced disease progression and parasite burden in susceptible BALB/c mice. Thus, to our knowledge, our data show for the first time that CD40 reciprocally regulates MKP-1 and MKP-3 expression and activity while the MKPs contribute to the reciprocal CD40 signaling-regulated anti-leishmanial functions. The findings reveal a novel parasite-devised immune evasion strategy and an effective target to redirect CD40-regulated immune responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer.

Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and fu...

متن کامل

Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells.

Activation of mitogen-activated protein kinases (MAPKs), their upstream activators MAPK kinases (MAPKKs or MEKs) and induction of MKP-1 (CL100/3CH134) and MKP-3 (Pyst1/rVH6) dual-specificity MAPK phosphatases (MKPs) were studied in the mouse embryonic stem cell line P19 during the 7 day induction of neuronal differentiation triggered by aggregation and retinoic acid. ERK (extracellular signal-r...

متن کامل

Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses.

Engagement of Toll-like receptors (TLRs) on macrophages leads to activation of the mitogen-activated protein kinases (MAPKs), which contribute to innate immune responses. MAPK activity is regulated negatively by MAPK phosphatases (MKPs). MKP-1, the founding member of this family of dual-specificity phosphatases, has been implicated in regulating lipopolysaccharide (LPS) responses, but its role ...

متن کامل

The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo.

Mitogen-activated protein kinase (MAPK) signaling pathways are important regulators of cell growth, proliferation, and stress responsiveness. A family of dual-specificity MAP kinase phosphatases (MKPs) act as critical counteracting factors that directly regulate the magnitude and duration of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. Here we ...

متن کامل

Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2.

MAP kinases (MAPKs), which control mitogenic signal transduction in all eukaryotic organisms, are inactivated by dual specificity MAPK phosphatases (MKPs). MKP-3, a prototypical MKP, achieves substrate specificity through its N-terminal domain binding to the MAPK ERK2, resulting in the activation of its C-terminal phosphatase domain. The solution structure and biochemical analysis of the ERK2 b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 186 10  شماره 

صفحات  -

تاریخ انتشار 2011